Interpolated Lowpass FIR Filters

Speaker: Richard Lyons
Besser Associates
E-mail: r.lyons@ieee.com
Interpolated FIR Filters

► Interpolated FIR filters are used to build narrowband lowpass FIR filters,
 - possibly more computationally efficient than traditional Parks-McClellan-designed FIR filters.

► Interpolated FIR (IFIR) filters are based upon the behavior of an N-tap nonrecursive linear-phase FIR filter,
 - when each of its single-unit delays are replaced with M-unit delays,
 - where M is an integer.
For example:

$h_p(k)$ impulse response of a 9-tap FIR *prototype* filter.

$h_{sh}(k)$ impulse response of an expanded FIR filter, where $M = 3$. We the expanded filter the *shaping filter*.
Prototype FIR filter's transfer function as

\[H_p(z) = \sum_{k=0}^{N_p-1} h_p(k)z^{-k} \]

- where \(N_p \) is the length of \(h_p(k) \), and \(k \) is the filter coefficient index.

Transfer function of a general shaping FIR filter \([z \text{ in } H_p(z) \text{ replaced with } z^M]\) is

\[H_{sh}(z) = \sum_{k=0}^{N_p-1} h_p(k)z^{-kM}. \]

If the number of coefficients in the prototype filter is \(N_p \),

- expanded impulse response length of shaping filter is

\[K_{sh} = M(N_p - 1) + 1. \]
An M-fold expansion of the impulse response causes an M-fold compression (and repetition) of $|H_p(f)|$ frequency magnitude response.

There are M repetitive passbands in $|H_{sh}(f)|$,
- centered at integer multiples of $1/M (f_s/M \text{ Hz})$,
- called images.
Next, we follow the shaping subfilter with a lowpass image-reject subfilter,
- whose task is to attenuate the image passbands,

The resultant $|H_{\text{fir}}(f)|$ frequency magnitude response is, of course, the product

$$|H_{\text{fir}}(f)| = |H_{\text{sh}}(f)| |H_{\text{ir}}(f)|.$$
Cascaded subfilters is called an **Interpolated FIR (IFIR)** filter.

IFIR filter interpolated impulse response.

(Interpolated version of $h_p(k)$.)

- Original desired lowpass filter's passband width is f_{pass}, - its stopband begins at f_{stop}, and - Its transition region width is $f_{\text{trans}} = f_{\text{stop}} - f_{\text{pass}}$.

- Then the prototype subfilter's normalized frequency parameters are defined as

\[
f_{p\text{-pass}} = Mf_{\text{pass}}, \quad f_{p\text{-stop}} = Mf_{\text{stop}}, \quad \text{and} \quad f_{p\text{-trans}} = Mf_{\text{trans}} = M(f_{\text{stop}} - f_{\text{pass}}).
\]
The image-reject subfilter's frequency parameters are

\[f_{\text{ir-pass}} = f_{\text{pass}}, \quad \text{and} \quad f_{\text{ir-stop}} = \frac{1}{M} - f_{\text{stop}}. \]

Stopband attenuations of the prototype filter and image-reject subfilter are identical,
- set equal to the desired IFIR filter stopband attenuation.

Let's look at a design example:

Consider the design of a desired linear-phase FIR filter:
- normalized passband width is \(f_{\text{pass}} = 0.1 \),
- passband ripple is 0.1 dB, (peak-peak)
- transition region width is \(f_{\text{trans}} = 0.02 \), and
- stopband attenuation is 60 dB.

Expansion factor of \(M = 3 \).
Here's what we have:

![Graphs showing filter characteristics](image)

Satisfying the original desired filter specifications would
- require a traditional single-stage FIR filter with $N_{tfir} = 137$ taps,
- 'tfir' subscript means traditional FIR.

Shape of $|H_{ifir}(f)|$ determined by $|H_{sh}(f)|$ "shaping subfilter".
IFIR's shaping and the image-reject subfilters require $N_p = 45$ and $N_{ir} = 25$ taps respectively, for a total of $N_{ifir} = 70$ taps.

We define the percent reduction in computational workload as

$$\% \text{ computation reduction} = 100 \frac{N_{tfir} - N_p - N_{ir}}{N_{tfir}}.$$ \hspace{1cm} (1)

IFIR filter computational workload reduction:

$$\% \text{ computational reduction} = 100 \frac{137 - 70}{137} = 49\%.$$
Choosing the Optimum Expansion Factor M

- Expansion factor M has a profound effect on the computational efficiency of IFIR filters.
- To show this, consider other values of expansion factor M.

<table>
<thead>
<tr>
<th>Expansion factor M</th>
<th>Number of taps</th>
<th>Computation reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$h_{sh}(k)$</td>
<td>$h_{ir}(k)$</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>95</td>
</tr>
</tbody>
</table>

- As so often happens in signal processing designs, there is a trade off to be made.
 - Smaller M, reduced frequency compression in $H_{sh}(f)$, increases necessary N_p taps,
 - Larger M, reduces transition region width of $H_{ir}(f)$, increases necessary N_{ir} taps.
As indicated in the following figure,

- max M is the largest integer satisfying $1/M \cdot f_{\text{stop}} \geq f_{\text{stop}}$, (or $1/M \geq 2f_{\text{stop}}$),
- ensuring no passband image overlap.

This yields an upper bound on M of

$$M_{\text{max}} = \left\lfloor \frac{1}{2f_{\text{stop}}} \right\rfloor$$

- where $\lfloor x \rfloor$ indicates truncation of x to an integer.

Thus the acceptable expansion factors are integers in the range $2 \leq M \leq M_{\text{max}}$.

For our above IFIR filter design example:

$$M_{\text{max}} = \left\lfloor \frac{1}{2(0.1 + 0.02)} \right\rfloor = 4.$$
Estimating the Number of FIR Filter Taps

To estimate the computation reduction of IFIR filters,
- we need an algorithm to compute N_{tfir},
- the number of taps, in a traditional nonrecursive FIR filter.

A particularly simple expression for N_{tfir} is

$$N_{tfir} \approx \frac{Atten}{22(f_{stop} - f_{pass})}.$$ \hfill (2)

- Where $Atten = \text{stopband attenuation in dB}$

Likewise, the number of taps in the prototype and image-reject subfilters are

$$N_p \approx \frac{Atten}{22(M)(f_{stop} - f_{pass})}, \quad \text{and}$$ \hfill (2')

$$N_{ir} \approx \frac{Atten}{22(1/M - f_{stop} - f_{pass})}.$$ \hfill (2'')
We want to model "% computation reduction" in terms of desired filter parameters.

If we substitute the expressions from Eq. (2) into Eq. (1),

- we can write the important IFIR filter design equation:

\[
\text{\% computation reduction} = 100 \left[\frac{M - 1}{M} - \frac{M f_{\text{trans}}}{1 - M f_{\text{trans}} - 2 M f_{\text{pass}}} \right].
\] (3)

- where \(f_{\text{trans}} = f_{\text{stop}} - f_{\text{pass}} \).
Equation (3) is plotted below, for $f_{\text{pass}} = 0.1$

- showing % computation reduction vs. f_{trans}.

When the transition region width is large, only a small M will avoid passband image overlap.

At smaller transition region widths, larger expansion factors are possible.
Here's IFIR filter performance when the $f_{\text{pass}} = 0.05$.

As f_{trans} approaches zero, % computation reduction approaches $100(M-1)/M$.
Here we plot max % computation reduction as a function of f_{trans} for $f_{\text{pass}} = 0.1$
- on a logarithmic frequency axis.
Next, we include other f_{pass} curves to show max % computation reduction vs. f_{trans}, and optimum M used to compute the max % computation reduction curves.

These are our IFIR filter design curves. 😊
IFIR Filter Implementation Issues

► Please resist the temptation to combine the two subfilters into a single filter
 - whose coefficients are the convolution of the subfilters' impulse responses.
 - With such a maneuver would we'd lose all computation reduction.

► When using programmable DSP chips, larger values of M require a larger block of hardware
 data memory, in the form of a *circular buffer*, be available for the shaping subfilter.

► The size of this data memory must be at least

\[K_{sh} = M(N_p - 1) + 1. \]

► When implementing an IFIR filter with a programmable DSP chip,
 - you must loop through the circular signal data buffer using an increment equal to M.

► If possible, use *folded* nonrecursive FIR structures,
 - to reduce the number of multiplications by a factor of two.
IFIR Filter Design Example

The design of practical lowpass IFIR filters is straightforward, and comprises four steps:

- Define the desired lowpass filter performance requirements,
- Determine a candidate value for the expansion factor \(M \),
- Design and evaluate the shaping and image-reject subfilters, and
- Investigate IFIR filter performance for alternate expansion factors near the initial \(M \) value.

As a design example, we'll design a lowpass IFIR filter with:

- \(f_{\text{pass}} = 0.02 \),
- passband ripple of 0.5 dB (p-p),
- \(f_{\text{trans}} = 0.01 \) (thus \(f_{\text{stop}} = 0.03 \), and
- stopband attenuation = 50 dB.
First, we find the $f_{\text{trans}} = 0.01$ point on the abscissa of our design curve and

- follow it up to the point where it intersects the $f_{\text{pass}} = 0.02$ curve.

- This intersection indicates we should start our design with $M = 7$.

![Graph showing optimum expansion factor vs transition region bandwidth]
With $M = 7$, we use our favorite traditional FIR filter design software to design a linear-phase prototype FIR filter with the following parameters:

$$f_{\text{p-pass}} = Mf_{\text{pass}} = 7(0.02) = 0.14,$$

passband ripple = $(0.5)/2$ dB = 0.25 dB, \textit{(rule of thumb)}

$$f_{\text{p-stop}} = Mf_{\text{stop}} = 7(0.03) = 0.21,$$

and stopband attenuation = 50 dB.

Such a prototype FIR filter will have $N_p = 33$ taps and, with $M = 7$,

- shaping subfilter has an impulse response length of $K_{sh} = 225$ samples.

Next, we design an image-reject subfilter having the following parameters:

$$f_{\text{ir-pass}} = f_{\text{pass}} = 0.02,$$

passband ripple = $(0.5)/2$ dB = 0.25 dB,

$$f_{\text{ir-stop}} = \frac{1}{M} - f_{\text{stop}} = 1/7 - 0.03 = 0.113,$$

and stopband attenuation = 50 dB.

This image-reject subfilter will have $N_{ir} = 27$ taps.
Cascaded image-reject and shaping subfilters require 60 multiplications per output sample.

- IFIR filter frequency magnitude response is shown below.

A traditional FIR filter requires roughly $N_{\text{fir}} = 240$ taps.
Computational workload reduction is 100x(240 -60)/240 = 75%!

- Final IFIR filter design step is to sit back and enjoy a job well done.

Further modeling, using alternate expansion factors, yields the following table.

<table>
<thead>
<tr>
<th>Expansion factor M</th>
<th>Number of taps $h_{sh}(k)$</th>
<th>$h_{ir}(k)$</th>
<th>IFIR storage total</th>
<th>K_{sh} data storage</th>
<th>Computation reduction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>76</td>
<td>8</td>
<td>84</td>
<td>226</td>
<td>65%</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>12</td>
<td>70</td>
<td>229</td>
<td>71%</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>17</td>
<td>63</td>
<td>226</td>
<td>74%</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>22</td>
<td>61</td>
<td>229</td>
<td>75%</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>27</td>
<td>60</td>
<td>225</td>
<td>75%</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>33</td>
<td>62</td>
<td>225</td>
<td>74%</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>41</td>
<td>67</td>
<td>226</td>
<td>72%</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>49</td>
<td>73</td>
<td>231</td>
<td>70%</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>60</td>
<td>81</td>
<td>221</td>
<td>66%</td>
</tr>
</tbody>
</table>
IFIR Filters With Sample Rate Conversion (SRC)

- IFIR filters useful for signal sample rate change applications,
 - decimation or interpolation.

- Consider an IFIR filter followed by downsampling by integer M.
 - Operation $\downarrow M$ means discard all but every Mth sample.

- Because $H_{sh}(z^M)$ and $H_{ir}(z)$ are linear, we can swap their order.

Decimation

$x(n) \rightarrow H_{sh}(z^M) \rightarrow H_{ir}(z) \rightarrow y(n)$

$x(n) \rightarrow H_{ir}(z) \rightarrow H_{sh}(z^M) \rightarrow y(n)$
Here comes the good part.

We can swap the order of the $H_{sh}(z^M)$ filter with the downsampler.

Now, where every M-unit delay in $H_{sh}(z^M)$ is replaced by a unit delay.

This takes use back to using our original low-order prototype filter $H_p(z)$,
- with its reduced signal data storage requirements.

Also, the $H_{ir}(z)$ and M downsampler combination can use polyphase filtering to reduce computational workload [1].
Similarly, IFIR filters can be used for interpolation (upsampling).

- The upsampling (interpolation) operation $\uparrow M$ means insert $M-1$ zero-valued samples between each $x(n)$ sample.

\[x(n) \xrightarrow{\uparrow M} H_{sh}(z^M) \xrightarrow{H_{ir}(z)} y(n) \]

Interpolation

\[x(n) \xrightarrow{H_{sh}(z)} = H_{p}(z) \xrightarrow{\uparrow M} H_{ir}(z) \xrightarrow{} y(n) \]

- We swap the order of filter $H_{sh}(z^M)$ with the upsampler,
- Now every M-unit delay in $H_{sh}(z^M)$ is replaced by a unit delay.
- This takes use back to using our original low-order prototype filter $H_{p}(z)$, - with its reduced signal data storage requirements. 😊
- The M upsampler and $H_{ir}(z)$ combination can use polyphase filtering to reduce computational workload.
IFIR Filter Summary

- We've introduced the structure and performance of IFIR filters.

- IFIR filters they can achieve significant computational workload reduction relative to traditional nonrecursive FIR filters,
 - reductions as large as 90%.

- IFIR filter implementation is a cascade of filters simple tapped-delay line FIR filters,
 - designed using readily-available nonrecursive FIR filter design software.
More IFIR filter details,
- math derivations
- design guidelines, and
- additional literature references are provided in:

Reference [1]: